Multiplier rings and primitive ideals

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

0-primitive Near-rings, Minimal Ideals and Simple Near-rings

We study the structure of 0-primitive near-rings and are able to answer an open question in the theory of minimal ideals in near-rings to the negative, namely if the heart of a zero symmetric subdirectly irreducible near-ring is subdirectly irreducible again. Also, we will be able to classify when a simple near-ring with an identity and containing a minimal left ideal is a Jacobson radical near...

متن کامل

On primitive ideals in polynomial rings over nil rings

Let R be a nil ring. We prove that primitive ideals in the polynomial ring R[x] in one indeterminate over R are of the form I [x] for some ideals I of R. All considered rings are associative but not necessarily have identities. Köthe’s conjecture states that a ring without nil ideals has no one-sided nil ideals. It is equivalent [4] to the assertion that polynomial rings over nil rings are Jaco...

متن کامل

Multiplier Ideals in Two-dimensional Local Rings with Rational Singularities

The aim of this paper is to study jumping numbers and multiplier ideals of any ideal in a two-dimensional local ring with a rational singularity. In particular we reveal which information encoded in a multiplier ideal determines the next jumping number. This leads to an algorithm to compute sequentially the jumping numbers and the whole chain of multiplier ideals in any desired range. As a cons...

متن کامل

Integrally Closed Ideals in Two-dimensional Regular Local Rings Are Multiplier Ideals

Multiplier ideals in commutative rings are certain integrally closed ideals with properties that lend themselves to highly interesting applications. How special are they among integrally closed ideals in general? We show that in a two-dimensional regular local ring with algebraically closed residue field there is in fact no difference between “multiplier” and “integrally closed” (or “complete.”...

متن کامل

Integrally Closed Finite-colength Ideals in Two-dimensional Regular Local Rings Are Multiplier Ideals

Introduction. There has arisen in recent years a substantial body of work on “multiplier ideals” in commutative rings (see [La]). Multiplier ideals are integrally closed ideals with properties that lend themselves to highly interesting applications. One is tempted then to ask just how special multiplier ideals are among integrally closed ideals in general. In this note we show that in a two-dim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1969

ISSN: 0002-9947

DOI: 10.1090/s0002-9947-1969-0257151-1